Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)SUMMARY We determine crustal shear wave velocity structure and crustal thickness at recently deployed seismic stations across West Antarctica, using a joint inversion of receiver functions and fundamental mode Rayleigh wave phase velocity dispersion. The stations are from both the UK Antarctic Network (UKANET) and Polar Earth Observing Network/Antarctic Network (POLENET/ANET). The former include, for the first time, four stations along the spine of the Antarctic Peninsula, three in the Ellsworth Land and five stations in the vicinity of the Pine Island Rift. Within the West Antarctic Rift System (WARS) we model a crustal thickness range of 18–28 km, and show that the thinnest crust (∼18 km) is in the vicinity of the Byrd Subglacial Basin and Bentley Subglacial Trench. In these regions we also find the highest ratio of fast (Vs = 4.0–4.3 km s–1, likely mafic) lower crust to felsic/intermediate upper crust. The thickest mafic lower crust we model is in Ellsworth Land, a critical area for constraining the eastern limits of the WARS. Although we find thinner crust in this region (∼30 km) than in the neighbouring Antarctic Peninsula and Haag-Ellsworth Whitmore block (HEW), the Ellsworth Land crust has not undergone as much extension as the central WARS. This suggests that the WARS does not link with the Weddell Sea Rift System through Ellsworth Land, and instead has progressed during its formation towards the Bellingshausen and Amundsen Sea Embayments. We also find that the thin WARS crust extends towards the Pine Island Rift, suggesting that the boundary between the WARS and the Thurston Island block lies in this region, ∼200 km north of its previously accepted position. The thickest crust (38–40 km) we model in this study is in the Ellsworth Mountain section of the HEW block. We find thinner crust (30–33 km) in the Whitmore Mountains and Haag Nunatak sectors of the HEW, consistent with the composite nature of the block. In the Antarctic Peninsula we find a crustal thickness range of 30–38 km and a likely dominantly felsic/intermediate crustal composition. By forward modelling high frequency receiver functions we also assess if any thick, low velocity subglacial sediment accumulations are present, and find a 0.1–0.8-km-thick layer at 10 stations within the WARS, Thurston Island and Ellsworth Land. We suggest that these units of subglacial sediment could provide a source region for the soft basal till layers found beneath numerous outlet glaciers, and may act to accelerate ice flow.more » « less
-
Abstract Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement‐dominated regions that impact ice‐sheet dynamics, potentially influencing future ice‐sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi‐data interpretation including machine‐learning approaches. These new capabilities permit a continent‐wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice‐sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice‐sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice‐sheet modeling studies is critical to underpin better capacity to predict future change.more » « less
An official website of the United States government
